Tsetlin Library

Promotion Monoids

Future Work 000

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Markov Chains from Jeu de Taquin

Arvind Ayyer (joint work with Steve Klee and Anne Schilling)

International Conference on Limit Theorems and Probability

Indian Institute of Science Bangalore

January 9, 2013

Tsetlin Library	Jeu de Taquin	Promotion	Future Work
●0000	00000000000000	000000000000000000000000000000000000	000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Tsetlin Library
- Ø Jeu de Taquin
- Promotion on posets
- Markov chain
- Stationary distribution
- 6 Eigenvalues
- Proof ideas

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
o●ooo	000000000000000	000000000000000000000000000000000000	0000	000
A model of a	library			

• *n* books on a shelf

$$B_1 B_2 \cdots B_n$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ��?

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
o●ooo	00000000000000	000000000000000000000000000000000000	0000	
A model of a	library			

• n books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

- The probability of choosing book B_i is x_i .
- Once the book is chosen, it is moved to the back.

$$B_1 \ B_2 \cdots B_i \cdots B_n \to B_1 \ B_2 \cdots B_n \ B_i$$
 with probability x_i .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Tsetlin Library	Jeu de Taquin	Promotion Monoids	Future Work
00●00	000000000000000		000

A Markov chain on permutations

- Let $\pi \in S_n$ be a permutation.
- The stationary distribution is given by [Hendricks '72]

$$\mathbb{P}(\pi) = \prod_{i=1}^n \frac{x_{\pi_i}}{x_{\pi_1} + \cdots + x_{\pi_i}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000				

A Markov chain on permutations

- Let $\pi \in S_n$ be a permutation.
- The stationary distribution is given by [Hendricks '72]

$$\mathbb{P}(\pi) = \prod_{i=1}^n \frac{x_{\pi_i}}{x_{\pi_1} + \cdots + x_{\pi_i}}$$

- A derangement is a permutation with no fixed points.
- d_m be the number of derangements in S_m .
- Let M_n be the transition matrix or generator. Then [Phatarfod '91]

$$\det(M_n - \lambda \mathbb{1}) = \prod_{S \subset [n]} (\lambda + x_S)^{d_{|S|}}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where
$$x_S = \sum_{i \in S} x_i$$
.

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
000●0	000000000000000	000000000000000000000000000000000000	0000	000
Example				

• The case of
$$n = 3$$
:

۲

$$M_{3} = \begin{pmatrix} * & x_{3} & 0 & 0 & x_{3} & 0 \\ x_{2} & * & x_{2} & 0 & 0 & 0 \\ 0 & 0 & * & x_{3} & 0 & x_{3} \\ x_{1} & 0 & x_{1} & * & 0 & 0 \\ 0 & 0 & 0 & x_{2} & * & x_{2} \\ 0 & x_{1} & 0 & 0 & x_{1} & * \end{pmatrix} \begin{bmatrix} 123 \\ 132 \\ 213 \\ 231 \\ 312 \\ 321 \end{bmatrix}$$

$$\mathbb{P}(231) = \frac{x_3 x_1}{(x_2 + x_3)(x_1 + x_2 + x_3)}$$

• Eigenvalues: 0, $-x_1 - x_2$, $-x_1 - x_3$, $-x_2 - x_3$ and $-x_1 - x_2 - x_3$ twice.

Tsetlin	Library
00000	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Generalizations

- Umpteen generalizations!
- Different moves, more shelves.
- Infinite libraries.
- Hyperplane arrangements [Bidigare, Hanlon, Rockmore '99]
- Left regular bands (monoids) [Brown '00]

Tsetlin Library	Jeu de Taquin	Promotion Monoids	Future Work
00000	••••••	000000000000000000000000000000000000000	000
C. I IX			

Standard Young Tableaux

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux

Bijection on SYT

1	3	4	7
2	5		
6	8		

Tsetlir	n Library		Jeu de Taquin	Promotion	Monoids	Future Work
			000000000000000000000000000000000000000	000000000000000000000000000000000000000		
<u>c</u> .		1.3.7	- 11			

Standard Young Tableaux

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux

Bijection on SYT

•	3	4	7
2	5		
6	8		

Ctourdoud N		000000000000000000000000000000000000000	0000	000
Standard	Young Tableaux			

- - A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
 - Originally defined by Schützenberger on skew tableaux
 - Bijection on SYT

2	3	4	7
•	5		
6	8		

	oung Tableaux		0000	000
00000	00000000000000	000000000000000000000000000000000000000	0000	000

- - A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
 - Originally defined by Schützenberger on skew tableaux
 - Bijection on SYT

2	3	4	7
5	•		
6	8		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Standard You	ing Tableaux			
Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	0000●0000000000	000000000000000000000000000000000000	0000	000

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux
- Bijection on SYT

2	3	4	7
5	8		
6	•		

Standard You	ing Tableaux			
Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	0000000000000000	000000000000000000000000000000000000	0000	000

J

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux
- Bijection on SYT

2	3	4	7
5	8		
6	9		

Tsetlin Library	Jeu de Taquin	Promotion Monoids	Future Work
00000	000000000000000	000000000000000000000000000000000000000	000
C. I IX			

Standard Young Tableaux

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux

Bijection on SYT

1	2	3	6
4	7		
5	8		

Tsetlin Library	Jeu de Taquin	Promotion Monoid	ls Future Work
	000000000000000		
C. I. I.Y.	T 1 1		

Standard Young Tableaux

- A Young diagram is a representation of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where the entries are weakly decreasing.
- Originally defined by Schützenberger on skew tableaux
- Bijection on SYT

$$\begin{bmatrix}
1 & 2 & 3 & 6 \\
4 & 7 \\
5 & 8
\end{bmatrix} = \partial_1 \begin{pmatrix}
1 & 3 & 4 & 7 \\
2 & 5 \\
6 & 8
\end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tsetlin Library	Jeu de Taquin	Promotion Monoids	Future Work
00000	oooooooooooooo		000

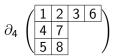
A Minor modification - ∂_j

- First used by Edelman, Hibi and Stanley.
- Instead of starting by removing 1, we can remove integer *j*.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Continue the procedure the same way.
- Add n+1 at the end
- Subtract 1 from everything larger than *j*.

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000000	000000000000000000000000000000000000	0000	000
Example				



Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000000	000000000000000000000000000000000000	0000	000
Example				

1	2	3	6
	7		
5	8		

▲ロト ▲圖 → ▲ 国 ト ▲ 国 ト の Q () ()

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000000	000000000000000000000000000000000000	0000	000
Example				

1	2	3	6
5	7		
•	8		

◆□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目▼

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000000	000000000000000000000000000000000000	0000	000
Example				

1	2	3	6
5	7		
8	•		

◆□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目▼

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000000	000000000000000000000000000000000000	0000	000
Example				

1 2 3 6 5 7 8 9

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000	000000000000000000000000000000000000	0000	000
Example				

•

1	2	3	5
4	6		
7	8		

・ロト ・ 理 ・ ・ ヨ ・ ・ 日 ・ うへの

	Jeu de Taquin 00000000000000	Promotion •000000000000000000000000000000000000	Future Work 000
Posets			

- $\bullet~P$ a partially ordered set with order \prec
- |P| = n, "naturally" labeled by integers in [n].
- $\mathcal{L}(P)$ linear extensions of P, ways of arranging elements of P in a line respecting the order

$$\mathcal{L}(\mathcal{P}) = \{\pi \in \mathcal{S}_n : i \prec j \Rightarrow \pi_i^{-1} < \pi_j^{-1}\} \ni e$$

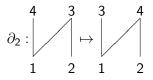
• Eg:
$$P = \begin{vmatrix} 4 & 3 \\ -1 & 2 \end{vmatrix}$$
, $\mathcal{L}(P) = \{1234, 1243, 1423, 2134, 2143\}.$

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ 今 今 ?

Tsetlin Library	Jeu de Taquin 00000000000000000	Promotion	Monoids	Future Work
00000			0 0000	000
.		· •		

Jeu de Taquin (aka Promotion)

- The action of ∂_i is exactly as before.
- For example,



◆□> ◆□> ◆三> ◆三> ・三> のへで

• Can be used to define a Markov Chain

Tsetlin Library	Jeu de Taquin	Promotion Monoids	Future Work
00000	000000000000000	oo●oooooooooooooooooooooooooooo	000
B 1 1			

Relation with Iransposition

• Define τ_i on $\mathcal{L}(P)$

$$\pi \tau_i = \begin{cases} \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \cdots \pi_n & \text{if } \pi_i \text{ and } \pi_{i+1} \text{ are not} \\ & \text{ comparable in } P, \\ \pi_1 \cdots \pi_n & \text{ otherwise.} \end{cases}$$

• Then [Haiman '92, Malvenuto & Reutenauer '94]

$$\partial_j = \tau_n \tau_{n-1} \cdots \tau_j.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

	Jeu de Taquin 00000000000000	Promotion 000000000000000000000000000000000000	Future Work 000
The Directed	Graph		

- Given P, let G be the graph whose vertex set is $\mathcal{L}(P)$
- There is an edge $\pi \to \pi'$ if $\pi' = \partial_j(\pi)$ for some j.

Lemma

G is strongly connected.

• We will define two Markov chains on this underlying graph

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
		000000000000000000000000000000000000000		

Uniform Promotion Graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j(\pi)$ has weight x_j .
- In this Markov chain, we give a probability distribution to the ∂_i 's.

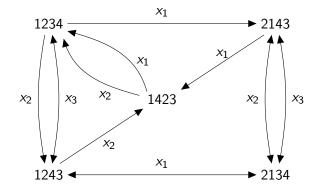
(日) (日) (日) (日) (日) (日) (日) (日) (日)

Theorem

The stationary distribution of the Markov chain is uniform.

• Follows from the fact that $\partial_i^k = \partial_i$ for large enough k.

Tsetlin Library	Jeu de Taquin	Promotion	Future Work
00000	00000000000000	000000000000000000000000000000000000	000
Example			



▲ロト ▲掃ト ▲注ト ▲注ト 二注 - のへで

Dromotion	Cuamb			
00000	000000000000000	000000000000000000000000000000000000000	0000	000
Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work

Promotion Graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j(\pi)$ has weight $x_{\pi(j)}$.
- In this Markov chain, we give a probability distribution to the values of the current state π .
- The stationary distribution of this Markov chain is no longer uniform.

Tsetlin Library 00000 Jeu de Taquin

Promotion Monoids

Future Work 000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stationary Distribution

Theorem (1)

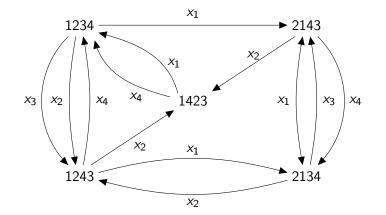
The stationary state weight $w(\pi)$ of the linear extension $\pi \in \mathcal{L}(P)$ for the continuous time Markov chain for the promotion graph is given by

$$w(\pi) = \prod_{i=1}^{n} \frac{x_1 + \cdots + x_i}{x_{\pi_1} + \cdots + x_{\pi_i}},$$

assuming w(e) = 1.

Note that $w(\pi)$ is independent of *P*. Proved by induction.

Tsetlin Library 00000	Jeu de Taquin 00000000000000	Promotion 000000000000000000000000000000000000	Future Work
Example			



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Tsetlin Library	Jeu de Taquin	Promotion	Future Work
00000	00000000000000	000000000000000000000000000000000000	000
Example (cont	td.)		

The transition matrix this time is given by

$$\begin{pmatrix} * & x_4 & x_1 + x_4 & 0 & 0 \\ x_2 + x_3 & * & 0 & x_2 & 0 \\ 0 & x_2 & * & 0 & x_2 \\ 0 & x_1 & 0 & * & x_1 + x_4 \\ x_1 & 0 & 0 & x_1 + x_3 & * \end{pmatrix}$$

Notice that row sums are no longer zero. The stationary distribution is

$$\left(1, \quad \frac{x_1+x_2+x_3}{x_1+x_2+x_4}, \quad \frac{(x_1+x_2)(x_1+x_2+x_3)}{(x_1+x_2)(x_1+x_2+x_4)}, \quad \frac{x_1}{x_2}, \quad \frac{x_1(x_1+x_2+x_3)}{x_2(x_1+x_2+x_4)}\right).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Recall Tsetlin library!

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	000000000000000	000000000000000000000000000000000000	0000	000

Special Posets

• A **rooted tree** is a connected poset, where each node has at most one successor.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- A rooted forest is a union of rooted trees.
- A chain is a totally ordered set.
- A union of chains is also a rooted forest.

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	000000000000000	000000000000000000000	0000	000
Rooted Fo	rests			

- Note that $\sum_{\pi} w(\pi) \neq 1$ in general.
- The **partition function** Z_P is the prefactor that makes $\mathbb{P}(\pi) = w(\pi)/Z_P$ a probability distribution.

Theorem (2)

Let P be a rooted forest of size n and let $x_{\leq i} = \sum_{j \leq i} x_j$. The partition function for the promotion graph is given by

$$Z_P = \prod_{i=1}^n \frac{x_1 + \cdots + x_i}{x_{\preceq i}}.$$

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
		000000000000000000000000000000000000000		
Evenenie				

•
$$\mathcal{L}(P) = \{123, 132, 312\}$$
 $P = \begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix}$

$$w(123) = 1, w(132) = \frac{(x_1 + x_2)}{(x_1 + x_3)}, w(312) = \frac{x_1(x_1 + x_2)}{x_3(x_1 + x_3)}$$

•
$$Z_P = \frac{x_1(x_1+x_2)(x_1+x_2+x_3)}{x_1(x_1+x_2)x_3}$$

$$\mathbb{P}(123) = \frac{x_3}{x_1 + x_2 + x_3}, \ \mathbb{P}(132) = \frac{x_3(x_1 + x_2)}{(x_1 + x_3)(x_1 + x_2 + x_3)},$$
$$\mathbb{P}(312) = \frac{x_1(x_1 + x_2)}{(x_1 + x_3)(x_1 + x_2 + x_3)}$$

◆□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目▼

Tsetlin Library	Jeu de Taquin	Promotion	Future Work
00000	00000000000000	000000000000000000000000000000000000	000
More terminol	ogy		

- An **upper set** S in P is a subset of [n] such that if $x \in S$ and $y \succeq x$, then also $y \in S$.
- Let *L* be the lattice (by inclusion) of upper sets in *P*.
- $\mu(x, y)$ is the Möbius function for $[x, y] := \{z \in L \mid x \preceq z \preceq y\}$
- $f([y, \hat{1}])$ is the number of maximal chains in the interval $[y, \hat{1}]$.
- Brown defined, for each element x ∈ L, a derangement number d_x

$$d_x = \sum_{y \succeq x} \mu(x, y) f([y, \hat{1}]) .$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Tsetlin Library 00000 Jeu de Taquin 000000000000000 Promotion Monoids

Future Work 000

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Spectrum of the Transition Matrix

Theorem (3)

Let P be a rooted forest, M the transition matrix of the promotion graph, and $\overline{M} = M + (x_1 + x_2 + \dots + x_n)\mathbb{1}$. Then

$$\det(\overline{M} - \lambda \mathbb{1}) = \prod_{\substack{S \subseteq [n] \\ S \text{ upper set in } P}} (\lambda - x_S)^{d_S},$$

where $x_S = \sum_{i \in S} x_i$ and d_S is the derangement number in the lattice L (by inclusion) of upper sets in P.

In other words, for each upper set $S \subseteq [n]$, there is an eigenvalue x_S with multiplicity d_S .

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
		000000000000000000000000000000000000000		
Corollary				

We consider the case of union of chains, and denote $P = [n_1] + [n_2] + \cdots + [n_k]$ to mean that the labels in the first chain are 1 through n_1 , etc.

Lemma (4)

When P is a union of chains (labeled consecutively within chains), d_S is the number of linear extensions of $[n] \setminus S$ which are derangements.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Tsetlin Library 00000	Jeu de Taquin 000000000000000	Promotion 00000000000000000000	Monoids 0000	Future Work 000
Running E	xample			

 $P = \begin{vmatrix} 2 \\ 1 \\ 3 \end{vmatrix}$

- $\mathcal{L}(P) = \{123, 132, 312\}$
- Upper sets: ϕ , {2}, {3}, {2,3}, {1,2}, {1,2,3}

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - わへで

• Eigenvalues of \overline{M} : $x_1 + x_2 + x_3$, x_2 , 0.

 Tsetlin Library
 Jeu de Taquin
 Promotion
 Monoids
 Future Work

 00000
 000000000000
 00000000000
 0000
 0000

Another Example: The Tsetlin Library

- *P* is the *n*-antichain.
- $\mathcal{L}(P) = S_n$.
- Theorems 1 and 2 prove the formula about the stationary distribution.
- Theorem 3 and Lemma 4 proves the formula about the eigenvalues.

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	000000000000000	000000000000000000000000000000000000	●000	000
Definitions				

- \bullet A monoid ${\mathcal M}$ is a set with an associative product and an identity.
- Natural **preorders** on \mathcal{M} :

 $x \leq_{R} y \text{ if } y = xu \text{ for some } u \in \mathcal{M}$ $x \leq_{L} y \text{ if } y = ux \text{ for some } u \in \mathcal{M}$

• Equivalence classes on \mathcal{M} :

 $xRy \text{ if } y\mathcal{M} = x\mathcal{M}$ $xLy \text{ if } \mathcal{M}y = \mathcal{M}x$

M is *R*-trivial (*L*-trivial) if all *R*-classes (*L*-classes) are singletons. Equivalently, if the preorders are partial orders.

Promotion Mc	noid			
Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000	000000000000000000000000000000000000	o●oo	000

• Define the operators G_i for $i \in [n]$ on $\mathcal{L}(P)$ by the promotion graph

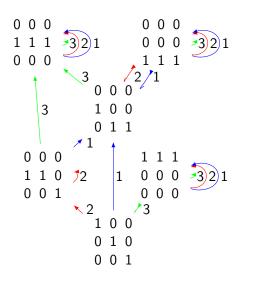
$$G_i = \overline{M}_{x_1 = \cdots = x_{i-1} = x_{i+1} = \cdots = x_n = 0}.$$

• Define the **promotion monoid** \mathcal{M} as the monoid generated by the G_i 's.

Lemma (5)

 \mathcal{M} is R-trivial.

R-trivial monoid for the running example.



Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
		000000000000000000000000000000000000000	0000	
Proof ideas				

- Construct the \leq_R preorder on \mathcal{M} and show that it is a partial order
- Prove an explicit eigenvalue formula for *R*-trivial monoids in general. This borrows ideas from Brown. Steinberg has such results for more general classes. This results in Theorem 3.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Use that formula in Lemma 5 to describe degeneracies in terms of derangements. This proves Lemma 4.

Tsetlin	Library

Covering Times

- Recall that the uniform promotion graph led to the uniform distribution on linear extensions
- Counting linear extensions in an important problem in practice.
- Can we get better bounds on cover times? Or mixing times?
- One reason this is plausible is because the Markov chains are irreversible.

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
00000	00000000000000	000000000000000000000000000000000000	0000	⊙●⊙
More classes c	of posets			

- In general, the characteristic polynomial of the transition matrix does not factorize.
- But there are other classes for which it does.

• Eg:
$$P = \begin{vmatrix} 4 & 3 \\ - 1 & 2 \end{vmatrix}$$

 $0, \ -x_1 - x_2, \ -x_1 - x_2 - x_4, \ -x_1 - x_2 - x_3 - x_4, \ -2x_1 - x_2 - x_3 - x_4.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Tsetlin Library	Jeu de Taquin	Promotion	Monoids	Future Work
				000

Thank you for your attention!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?